Regeneration of Dorsal Column Fibers into and beyond the Lesion Site following Adult Spinal Cord Injury
نویسندگان
چکیده
Regeneration is abortive following adult mammalian CNS injury. We have investigated whether increasing the intrinsic growth state of primary sensory neurons by a conditioning peripheral nerve lesion increases regrowth of their central axons. After dorsal column lesions, all fibers stop at the injury site. Animals with a peripheral axotomy concomitant with the central lesion show axonal growth into the lesion but not into the spinal cord above the lesion. A preconditioning lesion 1 or 2 weeks prior to the dorsal column injury results in growth into the spinal cord above the lesion. In vitro, the growth capacity of DRG neurite is also increased following preconditioning lesions. The intrinsic growth state of injured neurons is, therefore, a key determinant for central regeneration.
منابع مشابه
Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury.
Transplants of cells obtained from the olfactory system are a potential treatment for spinal cord injury and a number of clinical trials are in progress. However, the extent to which transplants improve recovery of function remains unclear and there are contradictory reports on the extent to which they support axonal regeneration. Here, we have used anatomical and electrophysiological technique...
متن کاملNeuronal overexpression of tissue-type plasminogen activator does not enhance sensory axon regeneration or locomotor recovery following dorsal hemisection of adult mouse thoracic spinal cord.
CNS axons rarely regenerate spontaneously back to original targets following spinal cord injury (SCI). Neuronal expression of the serine protease tissue-type plasminogen activator (tPA) enhances axon growth in vitro and following PNS injury. Here we test the hypothesis that neuronal overexpression of tPA in adult transgenic mice promotes CNS axon regeneration and functional recovery following S...
متن کاملCombinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury.
Previous attempts to promote regeneration after spinal cord injury have succeeded in stimulating axonal growth into or around lesion sites but rarely beyond them. We tested whether a combinatorial approach of stimulating the neuronal cell body with cAMP and the injured axon with neurotrophins would propel axonal growth into and beyond sites of spinal cord injury. A preconditioning stimulus to s...
متن کاملTransplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord.
UNLABELLED Endogenous repair after injury in the adult CNS is limited by a number of factors including cellular loss, inflammation, cavitation and glial scarring. Spinal cord neural progenitor cells (SCNPCs) may provide a valuable cellular source for promoting repair following spinal cord injury. SCNPCs are multipotent, can be expanded in vitro, have the capacity to differentiate into CNS cell ...
متن کاملRemyelination improvement after neurotrophic factors secreting cells transplantation in rat spinal cord injury
Objective(s): Neurotrophic factors secreting cells (NTS-SCs) may be a superior cell source for cell-based therapy in neurodegenerative diseases. NTS-SCs are able to secrete some neurotrophic Such as nerve growth factor and glia-derived neurotrophic factor. Our primary aim was to assess transplantation of neurotrophic factor secreting cells derived from human adipose-derived stem cells (hADSCs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 23 شماره
صفحات -
تاریخ انتشار 1999